Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Enhancing light–matter interaction in cavity quantum electrodynamics has aroused widespread interests in on-chip quantum information processing. Here, we propose a hybrid nanotoroid–nanowire system to enhance photon–exciton interaction. A nanoscale gap is formed by placing a dielectric nanowire close to a dielectric nanotoroid, where the coupling coefficient between photon and emitter can achieve 5.55 times of that without nanogap. Meanwhile, the cavity loss and spontaneous emission of the emitter will remain at a small value to guarantee the realization of strong coupling. The method might hold promise for the research of nanophotonics, quantum optics, and novel optical devices.
270.5580 Quantum electrodynamics 
Chinese Optics Letters
2019, 17(3): 032702
Author Affiliations
Abstract
1 State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Department of Physics, Peking University, Beijing 100871, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
We theoretically propose blue-detuned optical trapping for neutral atoms via strong near-field interfacing in a plasmonic nanohole array. The optical field at resonance forms a nanoscale-trap potential with an FWHM of 200 nm and about ~370 nm away from the nanohole; thus, a stable 3D atom trapping independent of the surface potential is demonstrated. The effective trap depth is more than 1 mK when the optical power of trapping light is only about 0.5 mW, while the atom scattering rate is merely about 3.31 s?1, and the trap lifetime is about 800 s. This compact plasmonic structure provides high uniformity of trap depths and a two-layer array of atom nanotraps, which should have important applications in the manipulation of cold atoms and collective resonance fluorescence.
(240.6680) Surface plasmons (230.4555) Coupled resonators (020.1335) Atom optics (020.7010) Laser trapping. 
Photonics Research
2017, 5(5): 05000436

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!